11 research outputs found

    A convolutional neural network-based decision support system for neonatal quiet sleep detection

    Get PDF
    Sleep plays an important role in neonatal brain and physical development, making its detection and characterization important for assessing early-stage development. In this study, we propose an automatic and computationally efficient algorithm to detect neonatal quiet sleep (QS) using a convolutional neural network (CNN). Our study used 38-hours of electroencephalography (EEG) recordings, collected from 19 neonates at Fudan Children's Hospital in Shanghai, China (Approval No. (2020) 22). To train and test the CNN, we extracted 12 prominent time and frequency domain features from 9 bipolar EEG channels. The CNN architecture comprised two convolutional layers with pooling and rectified linear unit (ReLU) activation. Additionally, a smoothing filter was applied to hold the sleep stage for 3 minutes. Through performance testing, our proposed method achieved impressive results, with 94.07% accuracy, 89.70% sensitivity, 94.40% specificity, 79.82% F1-score and a 0.74 kappa coefficient when compared to human expert annotations. A notable advantage of our approach is its computational efficiency, with the entire training and testing process requiring only 7.97 seconds. The proposed algorithm has been validated using leave one subject out (LOSO) validation, which demonstrates its consistent performance across a diverse range of neonates. Our findings highlight the potential of our algorithm for real-time neonatal sleep stage classification, offering a fast and cost-effective solution. This research opens avenues for further investigations in early-stage development monitoring and the assessment of neonatal health

    Automatic neonatal sleep stage classification:A comparative study

    Get PDF
    Sleep is an essential feature of living beings. For neonates, it is vital for their mental and physical development. Sleep stage cycling is an important parameter to assess neonatal brain and physical development. Therefore, it is crucial to administer newborn's sleep in the neonatal intensive care unit (NICU). Currently, Polysomnography (PSG) is used as a gold standard method for classifying neonatal sleep patterns, but it is expensive and requires a lot of human involvement. Over the last two decades, multiple researchers are working on automatic sleep stage classification algorithms using electroencephalography (EEG), electrocardiography (ECG), and video. In this study, we present a comprehensive review of existing algorithms for neonatal sleep, their limitations and future recommendations. Additionally, a brief comparison of the extracted features, classification algorithms and evaluation parameters is reported in the proposed study

    DNA key based visual chaotic image encryption

    Get PDF
    With the exponential growth of Internet technologies, digital information exchanged over the Internet is also significantly increased. In order to ensure the security of multimedia contents over the open natured Internet, data should be encrypted. In this paper, the quantum chaotic map is utilized for random vectors generation. Initial conditions for the chaos map are computed from a DNA (Deoxyribonucleic acid) sequence along with plaintext image through Secure Hash Algorithm-512 (SHA-512). The first two random vectors break the correlation among pixels of the original plaintext image via row and column permutation, respectively. For the diffusion characteristics, the permuted image is bitwise XORed with a random matrix generated through the third random vectors. The diffused image is divided into Least Significant Bit (LSB) and Most Significant Bits (MSBs) and Discrete Wavelet Transform (DWT) is applied to the carrier image. The HL and HH blocks of the carrier image are replaced with LSBs and MSBs of the diffused image for the generation of a visually encrypted image. The detailed theoretical analysis and experimental simulation of the designed scheme show that the proposed encryption algorithm is highly secured. Efficiency and robustness of the proposed visually image encryption scheme is also verified via a number of attack analyses, i.e., sensitivity attack analysis (> 99%), differential attack analysis (NPCR > 99, UACI > 33), brute force attack (almost 7.9892), statistical attack (correlation coefficient values are almost 0 or less than zero), noise tolerance, and cropping attack. Further security analyses such as encryption quality (ID ≅ 1564, DH = 3.000), homogeneity (0.3798), contrast (10.4820) and energy (0.0144) of the scheme are also evaluated

    Automatic neonatal sleep stage classification: A comparative study

    Get PDF
    Sleep is an essential feature of living beings. For neonates, it is vital for their mental and physical development. Sleep stage cycling is an important parameter to assess neonatal brain and physical development. Therefore, it is crucial to administer newborn's sleep in the neonatal intensive care unit (NICU). Currently, Polysomnography (PSG) is used as a gold standard method for classifying neonatal sleep patterns, but it is expensive and requires a lot of human involvement. Over the last two decades, multiple researchers are working on automatic sleep stage classification algorithms using electroencephalography (EEG), electrocardiography (ECG), and video. In this study, we present a comprehensive review of existing algorithms for neonatal sleep, their limitations and future recommendations. Additionally, a brief comparison of the extracted features, classification algorithms and evaluation parameters is reported in the proposed study

    Predicting Breast Cancer Leveraging Supervised Machine Learning Techniques

    Get PDF
    Breast cancer is one of the leading causes of increasing deaths in women worldwide. The complex nature (microcalcification and masses) of breast cancer cells makes it quite difficult for radiologists to diagnose it properly. Subsequently, various computer-aided diagnosis (CAD) systems have previously been developed and are being used to aid radiologists in the diagnosis of cancer cells. However, due to intrinsic risks associated with the delayed and/or incorrect diagnosis, it is indispensable to improve the developed diagnostic systems. In this regard, machine learning has recently been playing a potential role in the early and precise detection of breast cancer. This paper presents a new machine learning-based framework that utilizes the Random Forest, Gradient Boosting, Support Vector Machine, Artificial Neural Network, and Multilayer Perception approaches to efficiently predict breast cancer from the patient data. For this purpose, the Wisconsin Diagnostic Breast Cancer (WDBC) dataset has been utilized and classified using a hybrid Multilayer Perceptron Model (MLP) and 5-fold cross-validation framework as a working prototype. For the improved classification, a connection-based feature selection technique has been used that also eliminates the recursive features. The proposed framework has been validated on two separate datasets, i.e., the Wisconsin Prognostic dataset (WPBC) and Wisconsin Original Breast Cancer (WOBC) datasets. The results demonstrate improved accuracy of 99.12% due to efficient data preprocessing and feature selection applied to the input data

    EEG-Based Neonatal Sleep-Wake Classification Using Multilayer Perceptron Neural Network

    Get PDF
    Objective: Classification of sleep-wake states using multichannel electroencephalography (EEG) data that reliably work for neonates. Methods: A deep multilayer perceptron (MLP) neural network is developed to classify sleep-wake states using multichannel bipolar EEG signals, which takes an input vector of size 108 containing the joint features of 9 channels. The network avoids any post-processing step in order to work as a full-fledged real-time application. For training and testing the model, EEG recordings of 3525 30-second segments from 19 neonates (postmenstrual age of 37 ± 05 weeks) are used. Results: For sleep-wake classification, mean Cohen’s kappa between the network estimate and the ground truth annotation by human experts is 0.62. The maximum mean accuracy can reach up to 83% which, to date, is the highest accuracy for sleep-wake classification

    Can pre-trained convolutional neural networks be directly used as a feature extractor for video-based neonatal sleep and wake classification?

    No full text
    Objective In this paper, we propose to evaluate the use of pre-trained convolutional neural networks (CNNs) as a features extractor followed by the Principal Component Analysis (PCA) to find the best discriminant features to perform classification using support vector machine (SVM) algorithm for neonatal sleep and wake states using Fluke® facial video frames. Using pre-trained CNNs as a feature extractor would hugely reduce the effort of collecting new neonatal data for training a neural network which could be computationally expensive. The features are extracted after fully connected layers (FCL’s), where we compare several pre-trained CNNs, e.g., VGG16, VGG19, InceptionV3, GoogLeNet, ResNet, and AlexNet. Results From around 2-h Fluke® video recording of seven neonates, we achieved a modest classification performance with an accuracy, sensitivity, and specificity of 65.3%, 69.8%, 61.0%, respectively with AlexNet using Fluke® (RGB) video frames. This indicates that using a pre-trained model as a feature extractor could not fully suffice for highly reliable sleep and wake classification in neonates. Therefore, in future work a dedicated neural network trained on neonatal data or a transfer learning approach is required

    A hybrid DCNN-SVM model for classifying neonatal sleep and wake states based on facial expressions in video

    Get PDF
    Sleep is a natural phenomenon controlled by the central nervous system. The sleep-wake pattern, which functions as an essential indicator of neurophysiological organization in the neonatal period, has profound meaning in the prediction of cognitive diseases and brain maturity. In recent years, unobtrusive sleep monitoring and automatic sleep staging have been intensively studied for adults, but much less for neonates. This work aims to investigate a novel video-based unobtrusive method for neonatal sleep-wake classification by analyzing the behavioral changes in the neonatal facial region. A hybrid model is proposed to monitor the sleep-wake patterns of human neonates. The model combines two algorithms: deep convolutional neural network (DCNN) and support vector machine (SVM), where DCNN works as a trainable feature extractor and SVM as a classifier. Data was collected from nineteen Chinese neonates at the Children's Hospital of Fudan University, Shanghai, China. The classification results are compared with the gold standard of video-electroencephalography scored by pediatric neurologists. Validations indicate that the proposed hybrid DCNN-SVM model achieved reliable performances in classifying neonatal sleep and wake states in RGB video frames (with the face region detected), with an accuracy of 93.8 ± 2.2% and an F1-score 0.93 ± 0.3

    Novel framework: face feature selection algorithm for neonatal facial and related attributes recognition

    No full text
    In recent times, with the advancement of digital imaging, automatic facial recognition has been intensively studied for adults, while less for neonates. Due to the miniature facial structure and facial attributes, newborn facial recognition remains a challenging area. In this paper, an automatic video-based Neonatal Face Attributes Recognition (NFAR) approach in a hierarchical framework is proposed by coalescing the intensity-based method, pose estimation, and novel dedicated neonatal Face Feature Selection (FFS) algorithm. The intensity-based method is used for face detection, followed by the facial pose estimation algorithm and FFS are dedicated to neonatal pose and face feature recognition, respectively. In this study, video-data of 19 neonates’ were collected from the Children’s Hospital affiliated to Fudan University, Shanghai, to evaluate the proposed NFAR approach. The results show promising performance to detect the neonatal face, pose estimation (-450, 450), and facial features (nose, mouth, and eyes) recognition. The NFAR approach exhibits a sensitivity, accuracy, and specificity of 98.7%, 98.5%, and, 95.7% respectively, for the newborn babies at the frontal (00) facial region. The neonatal face and its attributes recognition can be expected to detect neonate’s medical abnormalities unobtrusively by examining the variation in newborn facial texture pattern

    Novel framework: face feature selection algorithm for neonatal facial and related attributes recognition

    No full text
    In recent times, with the advancement of digital imaging, automatic facial recognition has been intensively studied for adults, while less for neonates. Due to the miniature facial structure and facial attributes, newborn facial recognition remains a challenging area. In this paper, an automatic video-based Neonatal Face Attributes Recognition (NFAR) approach in a hierarchical framework is proposed by coalescing the intensity-based method, pose estimation, and novel dedicated neonatal Face Feature Selection (FFS) algorithm. The intensity-based method is used for face detection, followed by the facial pose estimation algorithm and FFS are dedicated to neonatal pose and face feature recognition, respectively. In this study, video-data of 19 neonates’ were collected from the Children’s Hospital affiliated to Fudan University, Shanghai, to evaluate the proposed NFAR approach. The results show promising performance to detect the neonatal face, pose estimation (-450, 450), and facial features (nose, mouth, and eyes) recognition. The NFAR approach exhibits a sensitivity, accuracy, and specificity of 98.7%, 98.5%, and, 95.7% respectively, for the newborn babies at the frontal (00) facial region. The neonatal face and its attributes recognition can be expected to detect neonate’s medical abnormalities unobtrusively by examining the variation in newborn facial texture pattern
    corecore